325 research outputs found

    Evidence for Diffuse Central Retinal Edema In Vivo in Diabetic Male Sprague Dawley Rats

    Get PDF
    Background: Investigations into the mechanism of diffuse retinal edema in diabetic subjects have been limited by a lack of animal models and techniques that co-localized retinal thickness and hydration in vivo. In this study we test the hypothesis that a previously reported supernormal central retinal thickness on MRI measured in experimental diabetic retinopathy in vivo represents a persistent and diffuse edema. Methodology/Principal Findings: In diabetic and age-matched control rats, and in rats experiencing dilutional hyponatremia (as a positive edema control), whole central retinal thickness, intraretinal water content and apparent diffusion coefficients (ADC, ‘water mobility’) were measured in vivo using quantitative MRI methods. Glycated hemoglobin and retinal thickness ex vivo (histology) were also measured in control and diabetic groups. In the dilutional hyponatremia model, central retinal thickness and water content were supernormal by quantitative MRI, and intraretinal water mobility profiles changed in a manner consistent with intracellular edema. Groups of diabetic (2, 3, 4, 6, and 9 mo of diabetes), and age-matched controls were then investigated with MRI and all diabetic rats showed supernormal whole central retinal thickness. In a separate study in 4 mo diabetic rats (and controls), MRI retinal thickness and water content metrics were significantly greater than normal, and ADC was subnormal in the outer retina; the increase in retinal thickness was not detected histologically on sections of fixed and dehydrated retinas from these rats

    Human Tumor Cell Proliferation Evaluated Using Manganese-Enhanced MRI

    Get PDF
    Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+) [measured with manganese-enhanced MRI (MEMRI)], is linked to proliferation rate in vitro.Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2) for one hour and then thoroughly washed. MEMRI R(1) values (longitudinal relaxation rates), which have a positive linear relationship with Mn(2+) concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+)-induced increases in R(1) compared to cells not exposed to Mn(2+). C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1) values and proliferation rate (p≤0.005), while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1) for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet.These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI

    Evidence of Key Tinnitus-Related Brain Regions Documented by a Unique Combination of Manganese-Enhanced MRI and Acoustic Startle Reflex Testing

    Get PDF
    Animal models continue to improve our understanding of tinnitus pathogenesis and aid in development of new treatments. However, there are no diagnostic biomarkers for tinnitus-related pathophysiology for use in awake, freely moving animals. To address this disparity, two complementary methods were combined to examine reliable tinnitus models (rats repeatedly administered salicylate or exposed to a single noise event): inhibition of acoustic startle and manganese-enhanced MRI. Salicylate-induced tinnitus resulted in wide spread supernormal manganese uptake compared to noise-induced tinnitus. Neither model demonstrated significant differences in the auditory cortex. Only in the dorsal cortex of the inferior colliculus (DCIC) did both models exhibit supernormal uptake. Therefore, abnormal membrane depolarization in the DCIC appears to be important in tinnitus-mediated activity. Our results provide the foundation for future studies correlating the severity and longevity of tinnitus with hearing loss and neuronal activity in specific brain regions and tools for evaluating treatment efficacy across paradigms

    A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative

    Get PDF
    Computational creativity is a flourishing research area, with a variety of creative systems being produced and developed. Creativity evaluation has not kept pace with system development with an evident lack of systematic evaluation of the creativity of these systems in the literature. This is partially due to difficulties in defining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity, let alone its computational equivalent. This paper proposes a Standardised Procedure for Evaluating Creative Systems (SPECS). SPECS is a three-step process: stating what it means for a particular computational system to be creative, deriving and performing tests based on these statements. To assist this process, the paper offers a collection of key components of creativity, identified empirically from discussions of human and computational creativity. Using this approach, the SPECS methodology is demonstrated through a comparative case study evaluating computational creativity systems that improvise music

    A qualitative investigation of lived experiences of long-term health condition management with people who are food insecure.

    Get PDF
    Background: As more people are living with one or more chronic health conditions, supporting patients to become activated, self-managers of their conditions has become a key health policy focus both in the UK and internationally. There is also growing evidence in the UK that those with long term health conditions have an increased risk of being food insecure. While international evidence indicates that food insecurity adversely affects individual's health condition management capability, little is known about how those so affected manage their condition(s) in this context. An investigation of lived experience of health condition management was undertaken with food insecure people living in north east Scotland. The study aimed to explore the challenges facing food insecure people in terms of, i. their self-care condition management practices, and ii. disclosing and discussing the experience of managing their condition with a health care professional, and iii. Notions of the support they might wish to receive from them. Methods: Twenty in-depth interviews were conducted with individuals attending a food bank and food pantry in north east Scotland. Interview audio recordings were fully transcribed and thematically analysed. Results: Individuals reporting multiple physical and mental health conditions, took part in the study. Four main themes were identified i.e.: 1. food practices, trade-offs and compromises, that relate to economic constraints and lack of choice; 2. illness experiences and food as they relate to physical and mental ill-health; 3. (in) visibility of participants' economic vulnerability within health care consultations; and 4. perceptions and expectations of the health care system. Conclusions: This study, the first of its kind in the UK, indicated that participants' health condition management aspirations were undermined by the experience of food insecurity, and that their health care consultations in were, on the whole, devoid of discussions of those challenges. As such, the study indicated practical and ethical implications for health care policy, practice and research associated with the risk of intervention-generated health inequalities that were suggested by this study. Better understanding is needed about the impact of household food insecurity on existing ill health, wellbeing and health care use across the UK

    Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe

    Get PDF
    Peptide probes for imaging retinal ganglion cell (RGC) apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA)-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in vivo imaging standard for functional evaluation of future probe analogues and provides a basis for extending this strategy into glaucoma-specific animal models

    Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana

    Get PDF
    Amidase 1 (AMI1) from Arabidopsis thaliana converts indole-3-acetamide (IAM), into indole-3-acetic acid (IAA). AMI1 is part of a small isogene family comprising seven members in A. thaliana encoding proteins which share a conserved glycine- and serine-rich amidase-signature. One member of this family has been characterized as an N-acylethanolamine-cleaving fatty acid amidohydrolase (FAAH) and two other members are part of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) or mitochondria (Tom complex) and presumably lack enzymatic activity. Among the hitherto characterized proteins of this family, AMI1 is the only member with indole-3-acetamide hydrolase activity, and IAM is the preferred substrate while N-acylethanolamines and oleamide are not hydrolyzed significantly, thus suggesting a role of AMI1 in auxin biosynthesis. Whereas the enzymatic function of AMI1 has been determined in vitro, the subcellular localization of the enzyme remained unclear. By using different GFP-fusion constructs and an A. thaliana transient expression system, we show a cytoplasmic localization of AMI1. In addition, RT-PCR and anti-amidase antisera were used to examine tissue specific expression of AMI1 at the transcriptional and translational level, respectively. AMI1-expression is strongest in places of highest IAA content in the plant. Thus, it is concluded that AMI1 may be involved in de novo IAA synthesis in A. thaliana

    Tissue functions mediated by β3-adrenoceptors—findings and challenges

    Get PDF
    As β3-adrenoceptor agonists metamorphose from experimental tools into therapeutic drugs, it is vital to obtain a comprehensive picture of the cell and tissue functions mediated by this receptor subtype in humans. Human tissues with proven functions and/or a high expression of β3-adrenoceptors include the urinary bladder, the gall bladder, and other parts of the gastrointestinal tract. While several other β3-adrenoceptor functions have been proposed based on results obtained in animals, their relevance to humans remains uncertain. For instance, β3-adrenoceptors perform an important role in thermogenesis and lipolysis in rodent brown and white adipose tissue, respectively, but their role in humans appears less significant. Moreover, the use of tools such as the agonist BRL 37344 and the antagonist SR59230A to demonstrate functional involvement of β3-adrenoceptors may lead in many cases to misleading conclusions as they can also interact with other β-adrenoceptor subtypes or even non-adrenoceptor targets. In conclusion, we propose that many responses attributed to β3-adrenoceptor stimulation may need re-evaluation in the light of the development of more selective tools. Moreover, findings in experimental animals need to be extended to humans in order to better understand the potential additional indications and side effects of the β3-adrenoceptor agonists that are beginning to enter clinical medicine

    Relationship between maternal obesity and infant feeding-interactions

    Get PDF
    BACKGROUND: There are no data regarding the relationship between maternal adiposity and interaction and feeding of infants and possible contribution to childhood obesity. In this study we determined the relationship between maternal body weight and composition and infant feeding patterns and maternal-infant interaction during 24-hour metabolic rate measurements in the Enhanced Metabolic Testing Activity Chamber (EMTAC). METHODS: The amount of time four obese (BMI = 33.5 ± 5.3 kg/m(2)) and three normal weight (BMI = 23.1 ± 0.6 kg/m(2)) biological mothers, spent feeding and interacting with their infants, along with what they ingested, was recorded during 24-hour metabolic rate measurements in the EMTAC. The seven infants were 4.9 ± 0.7 months, 69 ± 3 cm, 7.5 ± 0.8 kg, 26 ± 3 % fat and 29 ± 25 percentile for weight for length. Energy and macronutrient intake (kcal/kg) were assessed. Maternal body composition was determined by air displacement plethysmorgraphy and that of the infants by skin-fold thicknesses. Pearson correlations and independent t-tests were utilized for statistical analysis (p < 0.05). RESULTS: Infants born to obese biological mothers consumed more energy (87.6 ± 18.9 vs. 68.1 ± 17.3) and energy as carbohydrate (25 ± 6 vs.16 ± 3; p < 0.05) than their normal weight counterparts. Most of the increased intake was due to complementary feedings. Twenty-four hour infant energy intake increased with both greater maternal body weight (r = 0.73;p < 0.06) and percent body fat. Furthermore, obese biological mothers spent less total time interacting (570 ± 13 vs. 381 ± 30 minutes) and feeding (298 ± 32 vs.176 ± 22 minutes) (p < 0.05) their infants than their normal weight counterparts. Twenty-four hour interaction time negatively correlated with both maternal body weight (r = -0.98; p < 0.01) and percent body fat (r = -0.92; p < 0.01). Moreover, infants of obese mothers slept more (783 ± 38 vs. 682 ± 32 minutes; p < 0.05) than their normal weight counterparts. However, there were no differences in total 24-hour energy expenditure, resting and sleeping metabolic rates (kcal/kg) for infants born to obese and normal weight biological mothers. CONCLUSION: Greater maternal body weight and percent body fat were associated with greater infant energy intakes. These infants were fed less frequently and consumed more carbohydrates in a shorter period of time as compared to infants from normal weight biological mothers. These variations in feeding patterns may predispose certain infants to obesity

    Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells

    Get PDF
    Photodynamic therapy (PDT) using 5-aminolaevulinic acid (ALA) to drive production of an intracellular photosensitiser, protoporphyrin IX (PpIX), is a promising cancer treatment. However, ALA-PDT is still suboptimal for thick or refractory tumours. Searching for new approaches, we tested a known inducer of cellular differentiation, methotrexate (MTX), in combination with ALA-PDT in LNCaP cells. Methotrexate alone promoted growth arrest, differentiation, and apoptosis. Methotrexate pretreatment (1 mg l−1, 72 h) followed by ALA (0.3 mM, 4 h) resulted in a three-fold increase in intracellular PpIX, by biochemical and confocal analyses. After exposure to 512 nm light, killing was significantly enhanced in MTX-preconditioned cells. The reverse order of treatments, ALA-PDT followed by MTX, yielded no enhancement. Methotrexate caused a similar relative increase in PpIX, whether cells were incubated with ALA, methyl-ALA, or hexyl-ALA, arguing against a major effect upon ALA transport. Searching for an effect among porphyrin synthetic enzymes, we found that coproporphyrinogen oxidase (CPO) was increased three-fold by MTX at the mRNA and protein levels. Transfection of LNCaP cells with a CPO-expressing vector stimulated the accumulation of PpIX. Our data suggest that MTX, when used to modulate intracellular production of endogenous PpIX, may provide a new combination PDT approach for certain cancers
    corecore